Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2-(4-Nitrophenyl)-6-phenyltetrahydropyran-4-one

Zhi-Ming Chen, a* Zhi-Hui Ming, b Xiao-Chao Lib and Wen-Jing Yinb

^aSchool of Physics and Chemistry, Guizhou Normal University, Guiyang, Guizhou 550001, People's Republic of China, and ^bKey Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: CZM000219@tom.com

Key indicators

Single-crystal X-ray study T = 297 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.059 wR factor = 0.152Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The crystal structure of the title compound, $C_{17}H_{15}NO_4$, is stabilized by intermolecular $C-H\cdots O$ interactions.

Received 27 March 2007 Accepted 16 May 2007

Comment

Derivatives of tetrahydropyran have many applications; they occur in many natural products exhibiting important biological activities. These units can be found in monocyclic and polycyclic structures, such as laulimalide, the bryostatins, the phorboxazoles, and ratjadone (Gouverneur & Reiter, 2005). We report here the structure of the title tetrahydropyran derivative, (I) (Fig. 1), in which the bond lengths and angles present no unusual features. The two aromatic substituents are *syn* with respect to the tetrahydropyran system.

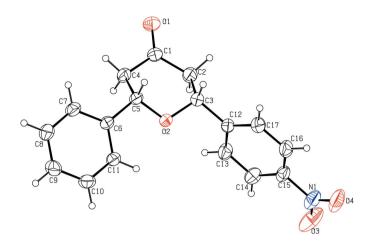
In the crystal structure, $C-H \cdot \cdot \cdot O$ hydrogen bonds (Table 1) link the molecules into chains along the c axis (Fig. 2).

Experimental

The title compound was synthesized according to the procedure of Li *et al.* (2006). Crystals appropriate for data collection were obtained by slow evaporation of an ⁱPrOH solution at 283 K.

Crystal data

 C_{17} H₁₅NO₄ V = 1453.2 (3) Å³ Z = 4 Monoclinic, P_{21}/c Mo $K\alpha$ radiation $\alpha = 9.2600$ (9) Å $\mu = 0.10 \text{ mm}^{-1}$ D = 12.8916 (13) Å D = 12.7775 (13) Å


Data collection

Bruker SMART 4 K CCD areadetector diffractometer absorption correction: none approximately approximately $R_{\rm int} = 0.028$ Assorption corrections are detections as $R_{\rm int} = 0.028$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ 199 parameters $wR(F^2) = 0.152$ H-atom parameters constrained S = 1.04 $\Delta \rho_{\rm max} = 0.25 {\rm e \ \mathring{A}}^{-3}$ 3439 reflections $\Delta \rho_{\rm min} = -0.18 {\rm e \ \mathring{A}}^{-3}$

© 2007 International Union of Crystallography All rights reserved

Figure 1 The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$C2-H2A\cdots O4^{i}$	0.97	2.56	3.381 (3)	143

Symmetry code: (i) -x + 1, -y, -z + 2.

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.98 Å and $U_{\rm iso}({\rm H})=1.5U_{\rm eq}({\rm C})$, but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

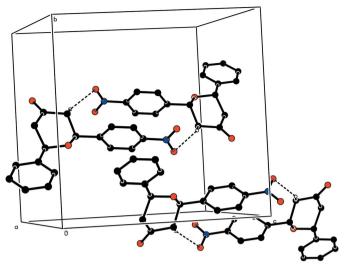


Figure 2
The molecular packing of (I). Hydrogen bonds are drawn as dashed lines. H atoms not involved in hydrogen bonds have been omitted.

PLATON (Spek, 2003); software used to prepare material for publication: *SHELXTL* (Bruker, 1997).

The authors are grateful to the Central China Normal University and Professor Xiao Wenjing.

References

Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA

Gouverneur, V. & Reiter, M. (2005). Chem. Eur. J. 11, 5806-5815.

Li, D. P., Guo, Y. C., Ding, Y. & Xiao, W. J. (2006). Chem. Commun. pp. 799–801.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.